Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Advance on Variable Elimination with Applications to Tensor-Based Computation (2002.09320v1)

Published 21 Feb 2020 in cs.AI and cs.LG

Abstract: We present new results on the classical algorithm of variable elimination, which underlies many algorithms including for probabilistic inference. The results relate to exploiting functional dependencies, allowing one to perform inference and learning efficiently on models that have very large treewidth. The highlight of the advance is that it works with standard (dense) factors, without the need for sparse factors or techniques based on knowledge compilation that are commonly utilized. This is significant as it permits a direct implementation of the improved variable elimination algorithm using tensors and their operations, leading to extremely efficient implementations especially when learning model parameters. Moreover, the proposed technique does not require knowledge of the specific functional dependencies, only that they exist, so can be used when learning these dependencies. We illustrate the efficacy of our proposed algorithm by compiling Bayesian network queries into tensor graphs and then learning their parameters from labeled data using a standard tool for tensor computation.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.