Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Domain Adaptive Adversarial Learning Based on Physics Model Feedback for Underwater Image Enhancement (2002.09315v1)

Published 20 Feb 2020 in cs.CV

Abstract: Owing to refraction, absorption, and scattering of light by suspended particles in water, raw underwater images suffer from low contrast, blurred details, and color distortion. These characteristics can significantly interfere with the visibility of underwater images and the result of visual tasks, such as segmentation and tracking. To address this problem, we propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images to get realistic results. A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed. Upon the synthetic dataset, a novel enhancement framework, which introduces a domain adaptive mechanism as well as a physics model constraint feedback control, is trained to enhance the underwater scenes. Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method, which outperforms nondeep and deep learning methods in both qualitative and quantitative evaluations. Furthermore, we perform an ablation study to show the contributions of each component we proposed.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)