Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning to Inpaint by Progressively Growing the Mask Regions (2002.09280v1)

Published 21 Feb 2020 in cs.CV

Abstract: Image inpainting is one of the most challenging tasks in computer vision. Recently, generative-based image inpainting methods have been shown to produce visually plausible images. However, they still have difficulties to generate the correct structures and colors as the masked region grows large. This drawback is due to the training stability issue of the generative models. This work introduces a new curriculum-style training approach in the context of image inpainting. The proposed method increases the masked region size progressively in training time, during test time the user gives variable size and multiple holes at arbitrary locations. Incorporating such an approach in GANs may stabilize the training and provides better color consistencies and captures object continuities. We validate our approach on the MSCOCO and CelebA datasets. We report qualitative and quantitative comparisons of our training approach in different models.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.