Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploiting the Full Capacity of Deep Neural Networks while Avoiding Overfitting by Targeted Sparsity Regularization (2002.09237v1)

Published 21 Feb 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Overfitting is one of the most common problems when training deep neural networks on comparatively small datasets. Here, we demonstrate that neural network activation sparsity is a reliable indicator for overfitting which we utilize to propose novel targeted sparsity visualization and regularization strategies. Based on these strategies we are able to understand and counteract overfitting caused by activation sparsity and filter correlation in a targeted layer-by-layer manner. Our results demonstrate that targeted sparsity regularization can efficiently be used to regularize well-known datasets and architectures with a significant increase in image classification performance while outperforming both dropout and batch normalization. Ultimately, our study reveals novel insights into the contradicting concepts of activation sparsity and network capacity by demonstrating that targeted sparsity regularization enables salient and discriminative feature learning while exploiting the full capacity of deep models without suffering from overfitting, even when trained excessively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.