Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Tensor-Train LSTM for Spatio-temporal Learning (2002.09131v5)

Published 21 Feb 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Learning from spatio-temporal data has numerous applications such as human-behavior analysis, object tracking, video compression, and physics simulation.However, existing methods still perform poorly on challenging video tasks such as long-term forecasting. This is because these kinds of challenging tasks require learning long-term spatio-temporal correlations in the video sequence. In this paper, we propose a higher-order convolutional LSTM model that can efficiently learn these correlations, along with a succinct representations of the history. This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time. To make this feasible in terms of computation and memory requirements, we propose a novel convolutional tensor-train decomposition of the higher-order model. This decomposition reduces the model complexity by jointly approximating a sequence of convolutional kernels asa low-rank tensor-train factorization. As a result, our model outperforms existing approaches, but uses only a fraction of parameters, including the baseline models.Our results achieve state-of-the-art performance in a wide range of applications and datasets, including the multi-steps video prediction on the Moving-MNIST-2and KTH action datasets as well as early activity recognition on the Something-Something V2 dataset.

Citations (106)

Summary

We haven't generated a summary for this paper yet.