Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Agent Reinforcement Learning as a Computational Tool for Language Evolution Research: Historical Context and Future Challenges (2002.08878v2)

Published 20 Feb 2020 in cs.MA, cs.CL, and cs.LG

Abstract: Computational models of emergent communication in agent populations are currently gaining interest in the machine learning community due to recent advances in Multi-Agent Reinforcement Learning (MARL). Current contributions are however still relatively disconnected from the earlier theoretical and computational literature aiming at understanding how language might have emerged from a prelinguistic substance. The goal of this paper is to position recent MARL contributions within the historical context of language evolution research, as well as to extract from this theoretical and computational background a few challenges for future research.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.