Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion and Strong Solutions to Variational Inequalities (2002.08872v3)

Published 20 Feb 2020 in math.OC, cs.DS, and cs.LG

Abstract: We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal (i.e., optimal up to poly-log factors in terms of iteration complexity) and parameter-free methods for solving monotone inclusion problems. These results immediately translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems. Our analysis is based on a novel and simple potential-based proof of convergence of Halpern iteration, a classical iteration for finding fixed points of nonexpansive maps. Additionally, we provide a series of algorithmic reductions that highlight connections between different problem classes and lead to lower bounds that certify near-optimality of the studied methods.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)