Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Bayes-Optimal View on Adversarial Examples (2002.08859v2)

Published 20 Feb 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Since the discovery of adversarial examples - the ability to fool modern CNN classifiers with tiny perturbations of the input, there has been much discussion whether they are a "bug" that is specific to current neural architectures and training methods or an inevitable "feature" of high dimensional geometry. In this paper, we argue for examining adversarial examples from the perspective of Bayes-Optimal classification. We construct realistic image datasets for which the Bayes-Optimal classifier can be efficiently computed and derive analytic conditions on the distributions under which these classifiers are provably robust against any adversarial attack even in high dimensions. Our results show that even when these "gold standard" optimal classifiers are robust, CNNs trained on the same datasets consistently learn a vulnerable classifier, indicating that adversarial examples are often an avoidable "bug". We further show that RBF SVMs trained on the same data consistently learn a robust classifier. The same trend is observed in experiments with real images in different datasets.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.