Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stroke Constrained Attention Network for Online Handwritten Mathematical Expression Recognition (2002.08670v1)

Published 20 Feb 2020 in cs.CV

Abstract: In this paper, we propose a novel stroke constrained attention network (SCAN) which treats stroke as the basic unit for encoder-decoder based online handwritten mathematical expression recognition (HMER). Unlike previous methods which use trace points or image pixels as basic units, SCAN makes full use of stroke-level information for better alignment and representation. The proposed SCAN can be adopted in both single-modal (online or offline) and multi-modal HMER. For single-modal HMER, SCAN first employs a CNN-GRU encoder to extract point-level features from input traces in online mode and employs a CNN encoder to extract pixel-level features from input images in offline mode, then use stroke constrained information to convert them into online and offline stroke-level features. Using stroke-level features can explicitly group points or pixels belonging to the same stroke, therefore reduces the difficulty of symbol segmentation and recognition via the decoder with attention mechanism. For multi-modal HMER, other than fusing multi-modal information in decoder, SCAN can also fuse multi-modal information in encoder by utilizing the stroke based alignments between online and offline modalities. The encoder fusion is a better way for combining multi-modal information as it implements the information interaction one step before the decoder fusion so that the advantages of multiple modalities can be exploited earlier and more adequately when training the encoder-decoder model. Evaluated on a benchmark published by CROHME competition, the proposed SCAN achieves the state-of-the-art performance.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.