Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 22 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Maximum Edge-Colorable Subgraph and Strong Triadic Closure Parameterized by Distance to Low-Degree Graphs (2002.08659v1)

Published 20 Feb 2020 in cs.DS, cs.DM, and math.CO

Abstract: Given an undirected graph $G$ and integers $c$ and $k$, the Maximum Edge-Colorable Subgraph problem asks whether we can delete at most $k$ edges in $G$ to obtain a graph that has a proper edge coloring with at most $c$ colors. We show that Maximum Edge-Colorable Subgraph admits, for every fixed $c$, a linear-size problem kernel when parameterized by the edge deletion distance of $G$ to a graph with maximum degree $c-1$. This parameterization measures the distance to instances that, due to Vizing's famous theorem, are trivial yes-instances. For $c\le 4$, we also provide a linear-size kernel for the same parameterization for Multi Strong Triadic Closure, a related edge coloring problem with applications in social network analysis. We provide further results for Maximum Edge-Colorable Subgraph parameterized by the vertex deletion distance to graphs where every component has order at most $c$ and for the list-colored versions of both problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.