Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Novel Framework for Selection of GANs for an Application (2002.08641v2)

Published 20 Feb 2020 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Generative Adversarial Network (GAN) is a current focal point of research. The body of knowledge is fragmented, leading to a trial-error method while selecting an appropriate GAN for a given scenario. We provide a comprehensive summary of the evolution of GANs starting from its inception addressing issues like mode collapse, vanishing gradient, unstable training and non-convergence. We also provide a comparison of various GANs from the application point of view, its behaviour and implementation details. We propose a novel framework to identify candidate GANs for a specific use case based on architecture, loss, regularization and divergence. We also discuss application of the framework using an example, and we demonstrate a significant reduction in search space. This efficient way to determine potential GANs lowers unit economics of AI development for organizations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.