Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Honing and proofing Astrophysical codes on the road to Exascale. Experiences from code modernization on many-core systems (2002.08161v1)

Published 19 Feb 2020 in cs.DC, astro-ph.IM, cs.PF, and physics.comp-ph

Abstract: The complexity of modern and upcoming computing architectures poses severe challenges for code developers and application specialists, and forces them to expose the highest possible degree of parallelism, in order to make the best use of the available hardware. The Intel${(R)}$ Xeon Phi${(TM)}$ of second generation (code-named Knights Landing, henceforth KNL) is the latest many-core system, which implements several interesting hardware features like for example a large number of cores per node (up to 72), the 512 bits-wide vector registers and the high-bandwidth memory. The unique features of KNL make this platform a powerful testbed for modern HPC applications. The performance of codes on KNL is therefore a useful proxy of their readiness for future architectures. In this work we describe the lessons learnt during the optimisation of the widely used codes for computational astrophysics P-Gadget-3, Flash and Echo. Moreover, we present results for the visualisation and analysis tools VisIt and yt. These examples show that modern architectures benefit from code optimisation at different levels, even more than traditional multi-core systems. However, the level of modernisation of typical community codes still needs improvements, for them to fully utilise resources of novel architectures.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.