Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints (2002.08159v4)

Published 19 Feb 2020 in stat.ML and cs.LG

Abstract: Many applications of AI involve scoring individuals using a learned function of their attributes. These predictive risk scores are then used to take decisions based on whether the score exceeds a certain threshold, which may vary depending on the context. The level of delegation granted to such systems in critical applications like credit lending and medical diagnosis will heavily depend on how questions of fairness can be answered. In this paper, we study fairness for the problem of learning scoring functions from binary labeled data, a classic learning task known as bipartite ranking. We argue that the functional nature of the ROC curve, the gold standard measure of ranking accuracy in this context, leads to several ways of formulating fairness constraints. We introduce general families of fairness definitions based on the AUC and on ROC curves, and show that our ROC-based constraints can be instantiated such that classifiers obtained by thresholding the scoring function satisfy classification fairness for a desired range of thresholds. We establish generalization bounds for scoring functions learned under such constraints, design practical learning algorithms and show the relevance our approach with numerical experiments on real and synthetic data.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.