Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cellular UAV-to-Device Communications: Trajectory Design and Mode Selection by Multi-agent Deep Reinforcement Learning (2002.08040v2)

Published 19 Feb 2020 in eess.SP and cs.NI

Abstract: In the current unmanned aircraft systems (UASs) for sensing services, unmanned aerial vehicles (UAVs) transmit their sensory data to terrestrial mobile devices over the unlicensed spectrum. However, the interference from surrounding terminals is uncontrollable due to the opportunistic channel access. In this paper, we consider a cellular Internet of UAVs to guarantee the Quality-of-Service (QoS), where the sensory data can be transmitted to the mobile devices either by UAV-to-Device (U2D) communications over cellular networks, or directly through the base station (BS). Since UAVs' sensing and transmission may influence their trajectories, we study the trajectory design problem for UAVs in consideration of their sensing and transmission. This is a Markov decision problem (MDP) with a large state-action space, and thus, we utilize multi-agent deep reinforcement learning (DRL) to approximate the state-action space, and then propose a multi-UAV trajectory design algorithm to solve this problem. Simulation results show that our proposed algorithm can achieve a higher total utility than policy gradient algorithm and single-agent algorithm.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.