Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Survey on Deep Geometry Learning: From a Representation Perspective (2002.07995v2)

Published 19 Feb 2020 in cs.GR

Abstract: Researchers have now achieved great success on dealing with 2D images using deep learning. In recent years, 3D computer vision and Geometry Deep Learning gain more and more attention. Many advanced techniques for 3D shapes have been proposed for different applications. Unlike 2D images, which can be uniformly represented by regular grids of pixels, 3D shapes have various representations, such as depth and multi-view images, voxel-based representation, point-based representation, mesh-based representation, implicit surface representation, etc. However, the performance for different applications largely depends on the representation used, and there is no unique representation that works well for all applications. Therefore, in this survey, we review recent development in deep learning for 3D geometry from a representation perspective, summarizing the advantages and disadvantages of different representations in different applications. We also present existing datasets in these representations and further discuss future research directions.

Citations (98)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.