Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On Tuza's conjecture for triangulations and graphs with small treewidth (2002.07925v2)

Published 18 Feb 2020 in math.CO and cs.DM

Abstract: Tuza (1981) conjectured that the size $\tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $\nu(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most $6$; we show that $\tau(G)\leq \frac{3}{2}\,\nu(G)$ for every planar triangulation $G$ different from $K_4$; and that $\tau(G)\leq\frac{9}{5}\,\nu(G) + \frac{1}{5}$ if $G$ is a maximal graph with treewidth 3. Our first result strengthens a result of Tuza, implying that $\tau(G) \leq 2\,\nu(G)$ for every $K_8$-free chordal graph $G$.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube