Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

On Tuza's conjecture for triangulations and graphs with small treewidth (2002.07925v2)

Published 18 Feb 2020 in math.CO and cs.DM

Abstract: Tuza (1981) conjectured that the size $\tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $\nu(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most $6$; we show that $\tau(G)\leq \frac{3}{2}\,\nu(G)$ for every planar triangulation $G$ different from $K_4$; and that $\tau(G)\leq\frac{9}{5}\,\nu(G) + \frac{1}{5}$ if $G$ is a maximal graph with treewidth 3. Our first result strengthens a result of Tuza, implying that $\tau(G) \leq 2\,\nu(G)$ for every $K_8$-free chordal graph $G$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.