Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Resource-Frugal Classification and Analysis of Pathology Slides Using Image Entropy (2002.07621v3)

Published 16 Feb 2020 in eess.IV and cs.CV

Abstract: Pathology slides of lung malignancies are classified using resource-frugal convolution neural networks (CNNs) that may be deployed on mobile devices. In particular, the challenging task of distinguishing adenocarcinoma (LUAD) and squamous-cell carcinoma (LUSC) lung cancer subtypes is approached in two stages. First, whole-slide histopathology images are downsampled to a size too large for CNN analysis but large enough to retain key anatomic detail. The downsampled images are decomposed into smaller square tiles, which are sifted based on their image entropies. A lightweight CNN produces tile-level classifications that are aggregated to classify the slide. The resulting accuracies are comparable to those obtained with much more complex CNNs and larger training sets. To allow clinicians to visually assess the basis for the classification -- that is, to see the image regions that underlie it -- color-coded probability maps are created by overlapping tiles and averaging the tile-level probabilities at a pixel level.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)