Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generating random bigraphs with preferential attachment (2002.07448v1)

Published 18 Feb 2020 in cs.DM, cs.DS, and cs.SI

Abstract: The bigraph theory is a relatively young, yet formally rigorous, mathematical framework encompassing Robin Milner's previous work on process calculi, on the one hand, and provides a generic meta-model for complex systems such as multi-agent systems, on the other. A bigraph $F = \langle FP, FL\rangle$ is a superposition of two independent graph structures comprising a place graph $FP$ (i.e., a forest) and a link graph $FL$ (i.e., a hypergraph), sharing the same node set, to express locality and communication of processes independently from each other. In this paper, we take some preparatory steps towards an algorithm for generating random bigraphs with preferential attachment feature w.r.t. $FP$ and assortative (disassortative) linkage pattern w.r.t. $FL$. We employ parameters allowing one to fine-tune the characteristics of the generated bigraph structures. To study the pattern formation properties of our algorithmic model, we analyze several metrics from graph theory based on artificially created bigraphs under different configurations. Bigraphs provide a quite useful and expressive semantic for process calculi for mobile and global ubiquitous computing. So far, this subject has not received attention in the bigraph-related scientific literature. However, artificial models may be particularly useful for simulation and evaluation of real-world applications in ubiquitous systems necessitating random structures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.