Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Modified Perturbed Sampling Method for Local Interpretable Model-agnostic Explanation (2002.07434v1)

Published 18 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Explainability is a gateway between Artificial Intelligence and society as the current popular deep learning models are generally weak in explaining the reasoning process and prediction results. Local Interpretable Model-agnostic Explanation (LIME) is a recent technique that explains the predictions of any classifier faithfully by learning an interpretable model locally around the prediction. However, the sampling operation in the standard implementation of LIME is defective. Perturbed samples are generated from a uniform distribution, ignoring the complicated correlation between features. This paper proposes a novel Modified Perturbed Sampling operation for LIME (MPS-LIME), which is formalized as the clique set construction problem. In image classification, MPS-LIME converts the superpixel image into an undirected graph. Various experiments show that the MPS-LIME explanation of the black-box model achieves much better performance in terms of understandability, fidelity, and efficiency.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.