Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Convolutional Support Vector Machine (2002.07221v1)

Published 11 Feb 2020 in cs.LG and cs.NE

Abstract: The support vector machine (SVM) and deep learning (e.g., convolutional neural networks (CNNs)) are the two most famous algorithms in small and big data, respectively. Nonetheless, smaller datasets may be very important, costly, and not easy to obtain in a short time. This paper proposes a novel convolutional SVM (CSVM) that has both advantages of CNN and SVM to improve the accuracy and effectiveness of mining smaller datasets. The proposed CSVM adapts the convolution product from CNN to learn new information hidden deeply in the datasets. In addition, it uses a modified simplified swarm optimization (SSO) to help train the CSVM to update classifiers, and then the traditional SVM is implemented as the fitness for the SSO to estimate the accuracy. To evaluate the performance of the proposed CSVM, experiments were conducted to test five well-known benchmark databases for the classification problem. Numerical experiments compared favorably with those obtained using SVM, 3-layer artificial NN (ANN), and 4-layer ANN. The results of these experiments verify that the proposed CSVM with the proposed SSO can effectively increase classification accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.