Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Support Vector Machine (2002.07221v1)

Published 11 Feb 2020 in cs.LG and cs.NE

Abstract: The support vector machine (SVM) and deep learning (e.g., convolutional neural networks (CNNs)) are the two most famous algorithms in small and big data, respectively. Nonetheless, smaller datasets may be very important, costly, and not easy to obtain in a short time. This paper proposes a novel convolutional SVM (CSVM) that has both advantages of CNN and SVM to improve the accuracy and effectiveness of mining smaller datasets. The proposed CSVM adapts the convolution product from CNN to learn new information hidden deeply in the datasets. In addition, it uses a modified simplified swarm optimization (SSO) to help train the CSVM to update classifiers, and then the traditional SVM is implemented as the fitness for the SSO to estimate the accuracy. To evaluate the performance of the proposed CSVM, experiments were conducted to test five well-known benchmark databases for the classification problem. Numerical experiments compared favorably with those obtained using SVM, 3-layer artificial NN (ANN), and 4-layer ANN. The results of these experiments verify that the proposed CSVM with the proposed SSO can effectively increase classification accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Wei-Chang Yeh (34 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.