Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal Error Pseudodistributions for Read-Once Branching Programs (2002.07208v4)

Published 17 Feb 2020 in cs.CC

Abstract: In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has been no improvement on Nisan's construction for the case $n=w$, which is most relevant to space-bounded derandomization. Recently, in a beautiful work, Braverman, Cohen and Garg (STOC'18) introduced the notion of a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction of a PRPD with seed length $\tilde{O}(\log n\cdot \log(nw)+\log(1/\varepsilon))$. A PRPD is a relaxation of a pseudorandom generator, which suffices for derandomizing $\mathbf{BPL}$ and also implies a hitting set. Unfortunately, their construction is quite involved and complicated. Hoza and Zuckerman (FOCS'18) later constructed a much simpler hitting set generator with seed length $O(\log n\cdot \log(nw)+\log(1/\varepsilon))$, but their techniques are restricted to hitting sets. In this work, we construct a PRPD with seed length $$O(\log n\cdot \log (nw)\cdot \log\log(nw)+\log(1/\varepsilon)).$$ This improves upon the construction in [BCG18] by a $O(\log\log(1/\varepsilon))$ factor, and is optimal in the small error regime. In addition, we believe our construction and analysis to be simpler than the work of Braverman, Cohen and Garg.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.