Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Agnostic Q-learning with Function Approximation in Deterministic Systems: Tight Bounds on Approximation Error and Sample Complexity (2002.07125v1)

Published 17 Feb 2020 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: The current paper studies the problem of agnostic $Q$-learning with function approximation in deterministic systems where the optimal $Q$-function is approximable by a function in the class $\mathcal{F}$ with approximation error $\delta \ge 0$. We propose a novel recursion-based algorithm and show that if $\delta = O\left(\rho/\sqrt{\dim_E}\right)$, then one can find the optimal policy using $O\left(\dim_E\right)$ trajectories, where $\rho$ is the gap between the optimal $Q$-value of the best actions and that of the second-best actions and $\dim_E$ is the Eluder dimension of $\mathcal{F}$. Our result has two implications: 1) In conjunction with the lower bound in [Du et al., ICLR 2020], our upper bound suggests that the condition $\delta = \widetilde{\Theta}\left(\rho/\sqrt{\mathrm{dim}_E}\right)$ is necessary and sufficient for algorithms with polynomial sample complexity. 2) In conjunction with the lower bound in [Wen and Van Roy, NIPS 2013], our upper bound suggests that the sample complexity $\widetilde{\Theta}\left(\mathrm{dim}_E\right)$ is tight even in the agnostic setting. Therefore, we settle the open problem on agnostic $Q$-learning proposed in [Wen and Van Roy, NIPS 2013]. We further extend our algorithm to the stochastic reward setting and obtain similar results.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.