Agnostic Q-learning with Function Approximation in Deterministic Systems: Tight Bounds on Approximation Error and Sample Complexity (2002.07125v1)
Abstract: The current paper studies the problem of agnostic $Q$-learning with function approximation in deterministic systems where the optimal $Q$-function is approximable by a function in the class $\mathcal{F}$ with approximation error $\delta \ge 0$. We propose a novel recursion-based algorithm and show that if $\delta = O\left(\rho/\sqrt{\dim_E}\right)$, then one can find the optimal policy using $O\left(\dim_E\right)$ trajectories, where $\rho$ is the gap between the optimal $Q$-value of the best actions and that of the second-best actions and $\dim_E$ is the Eluder dimension of $\mathcal{F}$. Our result has two implications: 1) In conjunction with the lower bound in [Du et al., ICLR 2020], our upper bound suggests that the condition $\delta = \widetilde{\Theta}\left(\rho/\sqrt{\mathrm{dim}_E}\right)$ is necessary and sufficient for algorithms with polynomial sample complexity. 2) In conjunction with the lower bound in [Wen and Van Roy, NIPS 2013], our upper bound suggests that the sample complexity $\widetilde{\Theta}\left(\mathrm{dim}_E\right)$ is tight even in the agnostic setting. Therefore, we settle the open problem on agnostic $Q$-learning proposed in [Wen and Van Roy, NIPS 2013]. We further extend our algorithm to the stochastic reward setting and obtain similar results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.