Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-layer Representation Fusion for Neural Machine Translation (2002.06714v1)

Published 16 Feb 2020 in cs.CL

Abstract: Neural machine translation systems require a number of stacked layers for deep models. But the prediction depends on the sentence representation of the top-most layer with no access to low-level representations. This makes it more difficult to train the model and poses a risk of information loss to prediction. In this paper, we propose a multi-layer representation fusion (MLRF) approach to fusing stacked layers. In particular, we design three fusion functions to learn a better representation from the stack. Experimental results show that our approach yields improvements of 0.92 and 0.56 BLEU points over the strong Transformer baseline on IWSLT German-English and NIST Chinese-English MT tasks respectively. The result is new state-of-the-art in German-English translation.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.