Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-item Non-truthful Auctions Achieve Good Revenue (2002.06702v6)

Published 16 Feb 2020 in cs.GT and econ.TH

Abstract: We present a general framework for designing approximately revenue-optimal mechanisms for multi-item additive auctions, which applies to both truthful and non-truthful auctions. Given a (not necessarily truthful) single-item auction format $A$ satisfying certain technical conditions, we run simultaneous item auctions augmented with a personalized entry fee for each bidder that must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. We bound the revenue of the resulting two-part tariff mechanism using a novel geometric technique that enables revenue guarantees for many common non-truthful auctions that previously had none. Our approach adapts and extends the duality framework of Cai et al [CDW16] beyond truthful auctions. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments, addressing an open question in the literature [RST17]. If all-pay auctions are used, we prove that the resulting mechanism is also credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. This is the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. If second-price auctions are used, we obtain a truthful $O(1)$-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.