Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SBERT-WK: A Sentence Embedding Method by Dissecting BERT-based Word Models (2002.06652v2)

Published 16 Feb 2020 in cs.CL, cs.LG, and cs.MM

Abstract: Sentence embedding is an important research topic in NLP since it can transfer knowledge to downstream tasks. Meanwhile, a contextualized word representation, called BERT, achieves the state-of-the-art performance in quite a few NLP tasks. Yet, it is an open problem to generate a high quality sentence representation from BERT-based word models. It was shown in previous study that different layers of BERT capture different linguistic properties. This allows us to fusion information across layers to find better sentence representation. In this work, we study the layer-wise pattern of the word representation of deep contextualized models. Then, we propose a new sentence embedding method by dissecting BERT-based word models through geometric analysis of the space spanned by the word representation. It is called the SBERT-WK method. No further training is required in SBERT-WK. We evaluate SBERT-WK on semantic textual similarity and downstream supervised tasks. Furthermore, ten sentence-level probing tasks are presented for detailed linguistic analysis. Experiments show that SBERT-WK achieves the state-of-the-art performance. Our codes are publicly available.

Citations (140)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.