Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Coresets for the Nearest-Neighbor Rule (2002.06650v3)

Published 16 Feb 2020 in cs.CG, cs.CV, cs.DS, and cs.LG

Abstract: Given a training set $P$ of labeled points, the nearest-neighbor rule predicts the class of an unlabeled query point as the label of its closest point in the set. To improve the time and space complexity of classification, a natural question is how to reduce the training set without significantly affecting the accuracy of the nearest-neighbor rule. Nearest-neighbor condensation deals with finding a subset $R \subseteq P$ such that for every point $p \in P$, $p$'s nearest-neighbor in $R$ has the same label as $p$. This relates to the concept of coresets, which can be broadly defined as subsets of the set, such that an exact result on the coreset corresponds to an approximate result on the original set. However, the guarantees of a coreset hold for any query point, and not only for the points of the training set. This paper introduces the concept of coresets for nearest-neighbor classification. We extend existing criteria used for condensation, and prove sufficient conditions to correctly classify any query point when using these subsets. Additionally, we prove that finding such subsets of minimum cardinality is NP-hard, and propose quadratic-time approximation algorithms with provable upper-bounds on the size of their selected subsets. Moreover, we show how to improve one of these algorithms to have subquadratic runtime, being the first of this kind for condensation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.