Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A closer look at the approximation capabilities of neural networks (2002.06505v1)

Published 16 Feb 2020 in cs.LG, math.FA, and stat.ML

Abstract: The universal approximation theorem, in one of its most general versions, says that if we consider only continuous activation functions $\sigma$, then a standard feedforward neural network with one hidden layer is able to approximate any continuous multivariate function $f$ to any given approximation threshold $\varepsilon$, if and only if $\sigma$ is non-polynomial. In this paper, we give a direct algebraic proof of the theorem. Furthermore we shall explicitly quantify the number of hidden units required for approximation. Specifically, if $X\subseteq \mathbb{R}n$ is compact, then a neural network with $n$ input units, $m$ output units, and a single hidden layer with $\binom{n+d}{d}$ hidden units (independent of $m$ and $\varepsilon$), can uniformly approximate any polynomial function $f:X \to \mathbb{R}m$ whose total degree is at most $d$ for each of its $m$ coordinate functions. In the general case that $f$ is any continuous function, we show there exists some $N\in \mathcal{O}(\varepsilon{-n})$ (independent of $m$), such that $N$ hidden units would suffice to approximate $f$. We also show that this uniform approximation property (UAP) still holds even under seemingly strong conditions imposed on the weights. We highlight several consequences: (i) For any $\delta > 0$, the UAP still holds if we restrict all non-bias weights $w$ in the last layer to satisfy $|w| < \delta$. (ii) There exists some $\lambda>0$ (depending only on $f$ and $\sigma$), such that the UAP still holds if we restrict all non-bias weights $w$ in the first layer to satisfy $|w|>\lambda$. (iii) If the non-bias weights in the first layer are \emph{fixed} and randomly chosen from a suitable range, then the UAP holds with probability $1$.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)