Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Posterior Ratio Estimation of Latent Variables (2002.06410v2)

Published 15 Feb 2020 in stat.ML and cs.LG

Abstract: Density Ratio Estimation has attracted attention from the machine learning community due to its ability to compare the underlying distributions of two datasets. However, in some applications, we want to compare distributions of random variables that are \emph{inferred} from observations. In this paper, we study the problem of estimating the ratio between two posterior probability density functions of a latent variable. Particularly, we assume the posterior ratio function can be well-approximated by a parametric model, which is then estimated using observed information and prior samples. We prove the consistency of our estimator and the asymptotic normality of the estimated parameters as the number of prior samples tending to infinity. Finally, we validate our theories using numerical experiments and demonstrate the usefulness of the proposed method through some real-world applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.