Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequency-based Search-control in Dyna (2002.05822v1)

Published 14 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Model-based reinforcement learning has been empirically demonstrated as a successful strategy to improve sample efficiency. In particular, Dyna is an elegant model-based architecture integrating learning and planning that provides huge flexibility of using a model. One of the most important components in Dyna is called search-control, which refers to the process of generating state or state-action pairs from which we query the model to acquire simulated experiences. Search-control is critical in improving learning efficiency. In this work, we propose a simple and novel search-control strategy by searching high frequency regions of the value function. Our main intuition is built on Shannon sampling theorem from signal processing, which indicates that a high frequency signal requires more samples to reconstruct. We empirically show that a high frequency function is more difficult to approximate. This suggests a search-control strategy: we should use states from high frequency regions of the value function to query the model to acquire more samples. We develop a simple strategy to locally measure the frequency of a function by gradient and hessian norms, and provide theoretical justification for this approach. We then apply our strategy to search-control in Dyna, and conduct experiments to show its property and effectiveness on benchmark domains.

Citations (15)

Summary

We haven't generated a summary for this paper yet.