Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods (2002.05545v3)

Published 13 Feb 2020 in math.OC and cs.LG

Abstract: Variance-reduced stochastic gradient methods have gained popularity in recent times. Several variants exist with different strategies for the storing and sampling of gradients and this work concerns the interactions between these two aspects. We present a general proximal variance-reduced gradient method and analyze it under strong convexity assumptions. Special cases of the algorithm include SAGA, L-SVRG and their proximal variants. Our analysis sheds light on epoch-length selection and the need to balance the convergence of the iterates with how often gradients are stored. The analysis improves on other convergence rates found in the literature and produces a new and faster converging sampling strategy for SAGA. Problem instances for which the predicted rates are the same as the practical rates are presented together with problems based on real world data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.