Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic Approximate Gradient Descent via the Langevin Algorithm (2002.05519v1)

Published 13 Feb 2020 in cs.LG, stat.CO, and stat.ML

Abstract: We introduce a novel and efficient algorithm called the stochastic approximate gradient descent (SAGD), as an alternative to the stochastic gradient descent for cases where unbiased stochastic gradients cannot be trivially obtained. Traditional methods for such problems rely on general-purpose sampling techniques such as Markov chain Monte Carlo, which typically requires manual intervention for tuning parameters and does not work efficiently in practice. Instead, SAGD makes use of the Langevin algorithm to construct stochastic gradients that are biased in finite steps but accurate asymptotically, enabling us to theoretically establish the convergence guarantee for SAGD. Inspired by our theoretical analysis, we also provide useful guidelines for its practical implementation. Finally, we show that SAGD performs well experimentally in popular statistical and machine learning problems such as the expectation-maximization algorithm and the variational autoencoders.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)