Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Adaptive Experimental Design for Average Treatment Effect Estimation (2002.05308v7)

Published 13 Feb 2020 in stat.ML, cs.LG, and econ.EM

Abstract: We study how to efficiently estimate average treatment effects (ATEs) using adaptive experiments. In adaptive experiments, experimenters sequentially assign treatments to experimental units while updating treatment assignment probabilities based on past data. We start by defining the efficient treatment-assignment probability, which minimizes the semiparametric efficiency bound for ATE estimation. Our proposed experimental design estimates and uses the efficient treatment-assignment probability to assign treatments. At the end of the proposed design, the experimenter estimates the ATE using a newly proposed Adaptive Augmented Inverse Probability Weighting (A2IPW) estimator. We show that the asymptotic variance of the A2IPW estimator using data from the proposed design achieves the minimized semiparametric efficiency bound. We also analyze the estimator's finite-sample properties and develop nonparametric and nonasymptotic confidence intervals that are valid at any round of the proposed design. These anytime valid confidence intervals allow us to conduct rate-optimal sequential hypothesis testing, allowing for early stopping and reducing necessary sample size.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.