Papers
Topics
Authors
Recent
2000 character limit reached

Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive (2002.05156v2)

Published 12 Feb 2020 in cs.GT, cs.AI, and cs.CC

Abstract: Persuasion studies how an informed principal may influence the behavior of agents by the strategic provision of payoff-relevant information. We focus on the fundamental multi-receiver model by Arieli and Babichenko (2019), in which there are no inter-agent externalities. Unlike prior works on this problem, we study the public persuasion problem in the general setting with: (i) arbitrary state spaces; (ii) arbitrary action spaces; (iii) arbitrary sender's utility functions. We fully characterize the computational complexity of computing a bi-criteria approximation of an optimal public signaling scheme. In particular, we show, in a voting setting of independent interest, that solving this problem requires at least a quasi-polynomial number of steps even in settings with a binary action space, assuming the Exponential Time Hypothesis. In doing so, we prove that a relaxed version of the Maximum Feasible Subsystem of Linear Inequalities problem requires at least quasi-polynomial time to be solved. Finally, we close the gap by providing a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, in specific settings, yields a QPTAS.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.