Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

List-Decodable Subspace Recovery: Dimension Independent Error in Polynomial Time (2002.05139v3)

Published 12 Feb 2020 in cs.DS, cs.LG, and stat.ML

Abstract: In list-decodable subspace recovery, the input is a collection of $n$ points $\alpha n$ (for some $\alpha \ll 1/2$) of which are drawn i.i.d. from a distribution $\mathcal{D}$ with a isotropic rank $r$ covariance $\Pi_$ (the \emph{inliers}) and the rest are arbitrary, potential adversarial outliers. The goal is to recover a $O(1/\alpha)$ size list of candidate covariances that contains a $\hat{\Pi}$ close to $\Pi_$. Two recent independent works (Raghavendra-Yau, Bakshi-Kothari 2020) gave the first efficient algorithm for this problem. These results, however, obtain an error that grows with the dimension (linearly in [RY] and logarithmically in BK) at the cost of quasi-polynomial running time) and rely on \emph{certifiable anti-concentration} - a relatively strict condition satisfied essentially only by the Gaussian distribution. In this work, we improve on these results on all three fronts: \emph{dimension-independent} error via a faster fixed-polynomial running time under less restrictive distributional assumptions. Specifically, we give a $poly(1/\alpha) d{O(1)}$ time algorithm that outputs a list containing a $\hat{\Pi}$ satisfying $|\hat{\Pi} -\Pi_|F \leq O(1/\alpha)$. Our result only needs $\mathcal{D}$ to have \emph{certifiably hypercontractive} degree 2 polynomials. As a result, in addition to Gaussians, our algorithm applies to the uniform distribution on the hypercube and $q$-ary cubes and arbitrary product distributions with subgaussian marginals. Prior work (Raghavendra and Yau, 2020) had identified such distributions as potential hard examples as such distributions do not exhibit strong enough anti-concentration. When $\mathcal{D}$ satisfies certifiable anti-concentration, we obtain a stronger error guarantee of $|\hat{\Pi}-\Pi|_F \leq \eta$ for any arbitrary $\eta > 0$ in $d{O(poly(1/\alpha) + \log (1/\eta))}$ time.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.