Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

FastWave: Accelerating Autoregressive Convolutional Neural Networks on FPGA (2002.04971v1)

Published 9 Feb 2020 in eess.AS, cs.LG, and cs.SD

Abstract: Autoregressive convolutional neural networks (CNNs) have been widely exploited for sequence generation tasks such as audio synthesis, LLMing and neural machine translation. WaveNet is a deep autoregressive CNN composed of several stacked layers of dilated convolution that is used for sequence generation. While WaveNet produces state-of-the art audio generation results, the naive inference implementation is quite slow; it takes a few minutes to generate just one second of audio on a high-end GPU. In this work, we develop the first accelerator platform~\textit{FastWave} for autoregressive convolutional neural networks, and address the associated design challenges. We design the Fast-Wavenet inference model in Vivado HLS and perform a wide range of optimizations including fixed-point implementation, array partitioning and pipelining. Our model uses a fully parameterized parallel architecture for fast matrix-vector multiplication that enables per-layer customized latency fine-tuning for further throughput improvement. Our experiments comparatively assess the trade-off between throughput and resource utilization for various optimizations. Our best WaveNet design on the Xilinx XCVU13P FPGA that uses only on-chip memory, achieves 66 faster generation speed compared to CPU implementation and 11 faster generation speed than GPU implementation.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.