Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Predicting drug properties with parameter-free machine learning: Pareto-Optimal Embedded Modeling (POEM) (2002.04555v2)

Published 11 Feb 2020 in cs.LG and stat.ML

Abstract: The prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of small molecules from their molecular structure is a central problem in medicinal chemistry with great practical importance in drug discovery. Creating predictive models conventionally requires substantial trial-and-error for the selection of molecular representations, ML algorithms, and hyperparameter tuning. A generally applicable method that performs well on all datasets without tuning would be of great value but is currently lacking. Here, we describe Pareto-Optimal Embedded Modeling (POEM), a similarity-based method for predicting molecular properties. POEM is a non-parametric, supervised ML algorithm developed to generate reliable predictive models without need for optimization. POEMs predictive strength is obtained by combining multiple different representations of molecular structures in a context-specific manner, while maintaining low dimensionality. We benchmark POEM relative to industry-standard ML algorithms and published results across 17 classifications tasks. POEM performs well in all cases and reduces the risk of overfitting.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.