Papers
Topics
Authors
Recent
2000 character limit reached

HMRL: Hyper-Meta Learning for Sparse Reward Reinforcement Learning Problem (2002.04238v2)

Published 11 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: In spite of the success of existing meta reinforcement learning methods, they still have difficulty in learning a meta policy effectively for RL problems with sparse reward. In this respect, we develop a novel meta reinforcement learning framework called Hyper-Meta RL(HMRL), for sparse reward RL problems. It is consisted with three modules including the cross-environment meta state embedding module which constructs a common meta state space to adapt to different environments; the meta state based environment-specific meta reward shaping which effectively extends the original sparse reward trajectory by cross-environmental knowledge complementarity and as a consequence the meta policy achieves better generalization and efficiency with the shaped meta reward. Experiments with sparse-reward environments show the superiority of HMRL on both transferability and policy learning efficiency.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.