Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning (2002.04227v1)

Published 11 Feb 2020 in cs.CV

Abstract: Hyperspectral image(HSI) classification has been improved with convolutional neural network(CNN) in very recent years. Being different from the RGB datasets, different HSI datasets are generally captured by various remote sensors and have different spectral configurations. Moreover, each HSI dataset only contains very limited training samples and thus it is prone to overfitting when using deep CNNs. In this paper, we first deliver a 3D asymmetric inception network, AINet, to overcome the overfitting problem. With the emphasis on spectral signatures over spatial contexts of HSI data, AINet can convey and classify the features effectively. In addition, the proposed data fusion transfer learning strategy is beneficial in boosting the classification performance. Extensive experiments show that the proposed approach beat all of the state-of-art methods on several HSI benchmarks, including Pavia University, Indian Pines and Kennedy Space Center(KSC). Code can be found at: https://github.com/UniLauX/AINet.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.