Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Connecting GANs, MFGs, and OT (2002.04112v4)

Published 10 Feb 2020 in cs.GT and cs.LG

Abstract: Generative adversarial networks (GANs) have enjoyed tremendous success in image generation and processing, and have recently attracted growing interests in financial modelings. This paper analyzes GANs from the perspectives of mean-field games (MFGs) and optimal transport. More specifically, from the game theoretical perspective, GANs are interpreted as MFGs under Pareto Optimality criterion or mean-field controls; from the optimal transport perspective, GANs are to minimize the optimal transport cost indexed by the generator from the known latent distribution to the unknown true distribution of data. The MFGs perspective of GANs leads to a GAN-based computational method (MFGANs) to solve MFGs: one neural network for the backward Hamilton-Jacobi-BeLLMan equation and one neural network for the forward Fokker-Planck equation, with the two neural networks trained in an adversarial way. Numerical experiments demonstrate superior performance of this proposed algorithm, especially in the higher dimensional case, when compared with existing neural network approaches.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.