Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Online Learning with Varying Norms (2002.03963v1)

Published 10 Feb 2020 in cs.LG and stat.ML

Abstract: Given any increasing sequence of norms $|\cdot|0,\dots,|\cdot|{T-1}$, we provide an online convex optimization algorithm that outputs points $w_t$ in some domain $W$ in response to convex losses $\ell_t:W\to \mathbb{R}$ that guarantees regret $R_T(u)=\sum_{t=1}T \ell_t(w_t)-\ell_t(u)\le \tilde O\left(|u|{T-1}\sqrt{\sum{t=1}T |g_t|_{t-1,\star}2}\right)$ where $g_t$ is a subgradient of $\ell_t$ at $w_t$. Our method does not require tuning to the value of $u$ and allows for arbitrary convex $W$. We apply this result to obtain new "full-matrix"-style regret bounds. Along the way, we provide a new examination of the full-matrix AdaGrad algorithm, suggesting a better learning rate value that improves significantly upon prior analysis. We use our new techniques to tune AdaGrad on-the-fly, realizing our improved bound in a concrete algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.