Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Adaptive Online Learning with Varying Norms (2002.03963v1)

Published 10 Feb 2020 in cs.LG and stat.ML

Abstract: Given any increasing sequence of norms $|\cdot|0,\dots,|\cdot|{T-1}$, we provide an online convex optimization algorithm that outputs points $w_t$ in some domain $W$ in response to convex losses $\ell_t:W\to \mathbb{R}$ that guarantees regret $R_T(u)=\sum_{t=1}T \ell_t(w_t)-\ell_t(u)\le \tilde O\left(|u|{T-1}\sqrt{\sum{t=1}T |g_t|_{t-1,\star}2}\right)$ where $g_t$ is a subgradient of $\ell_t$ at $w_t$. Our method does not require tuning to the value of $u$ and allows for arbitrary convex $W$. We apply this result to obtain new "full-matrix"-style regret bounds. Along the way, we provide a new examination of the full-matrix AdaGrad algorithm, suggesting a better learning rate value that improves significantly upon prior analysis. We use our new techniques to tune AdaGrad on-the-fly, realizing our improved bound in a concrete algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)