K-bMOM: a robust Lloyd-type clustering algorithm based on bootstrap Median-of-Means (2002.03899v2)
Abstract: We propose a new clustering algorithm that is robust to the presence of outliers in the dataset. We perform Lloyd-type iterations with robust estimates of the centroids. More precisely, we build on the idea of median-of-means statistics to estimate the centroids, but allow for replacement while constructing the blocks. We call this methodology the bootstrap median-of-means (bMOM) and prove that if enough blocks are generated through the bootstrap sampling, then it has a better breakdown point for mean estimation than the classical median-of-means (MOM), where the blocks form a partition of the dataset. From a clustering perspective, bMOM enables to take many blocks of a desired size, thus avoiding possible disappearance of clusters in some blocks, a pitfall that can occur for the partition-based generation of blocks of the classical median-of-means. Experiments on simulated datasets show that the proposed approach, called K-bMOM, performs better than existing robust K-means based methods. Guidelines are provided for tuning the hyper-parameters K-bMOM in practice. It is also recommended to the practitionner to use such a robust approach to initialize their clustering algorithm. Finally, considering a simplified and theoretical version of our estimator, we prove its robustness to adversarial contamination by deriving robust rates of convergence for the K-means distorsion. To our knowledge, it is the first result of this kind for the K-means distorsion.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.