Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Attentional networks for music generation (2002.03854v1)

Published 6 Feb 2020 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: Realistic music generation has always remained as a challenging problem as it may lack structure or rationality. In this work, we propose a deep learning based music generation method in order to produce old style music particularly JAZZ with rehashed melodic structures utilizing a Bi-directional Long Short Term Memory (Bi-LSTM) Neural Network with Attention. Owing to the success in modelling long-term temporal dependencies in sequential data and its success in case of videos, Bi-LSTMs with attention serve as the natural choice and early utilization in music generation. We validate in our experiments that Bi-LSTMs with attention are able to preserve the richness and technical nuances of the music performed.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube