Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Feature Fusion for Mitosis Counting (2002.03781v3)

Published 1 Feb 2020 in cs.CV, cs.LG, and stat.ML

Abstract: Each woman living in the United States has about 1 in 8 chance of developing invasive breast cancer. The mitotic cell count is one of the most common tests to assess the aggressiveness or grade of breast cancer. In this prognosis, histopathology images must be examined by a pathologist using high-resolution microscopes to count the cells. Unfortunately, this can be an exhaustive task with poor reproducibility, especially for non-experts. Deep learning networks have recently been adapted to medical applications which are able to automatically localize these regions of interest. However, these region-based networks lack the ability to take advantage of the segmentation features produced by a full image CNN which are often used as a sole method of detection. Therefore, the proposed method leverages Faster RCNN for object detection while fusing segmentation features generated by a UNet with RGB image features to achieve an F-score of 0.508 on the MITOS-ATYPIA 2014 mitosis counting challenge dataset, outperforming state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.