Papers
Topics
Authors
Recent
2000 character limit reached

Weighted Average Precision: Adversarial Example Detection in the Visual Perception of Autonomous Vehicles (2002.03751v2)

Published 25 Jan 2020 in cs.CV and eess.IV

Abstract: Recent works have shown that neural networks are vulnerable to carefully crafted adversarial examples (AE). By adding small perturbations to input images, AEs are able to make the victim model predicts incorrect outputs. Several research work in adversarial machine learning started to focus on the detection of AEs in autonomous driving. However, the existing studies either use preliminary assumption on outputs of detections or ignore the tracking system in the perception pipeline. In this paper, we firstly propose a novel distance metric for practical autonomous driving object detection outputs. Then, we bridge the gap between the current AE detection research and the real-world autonomous systems by providing a temporal detection algorithm, which takes the impact of tracking system into consideration. We perform evaluation on Berkeley Deep Drive (BDD) and CityScapes datasets to show how our approach outperforms existing single-frame-mAP based AE detections by increasing 17.76% accuracy of performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube