Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Magnetic Field Simulation with Data-Driven Material Modeling (2002.03715v2)

Published 10 Feb 2020 in physics.comp-ph and cs.CE

Abstract: This paper developes a data-driven magnetostatic finite-element (FE) solver which directly exploits measured material data instead of a material curve constructed from it. The distances between the field solution and the measurement points are minimized while enforcing Maxwell's equations. The minimization problem is solved by employing the Lagrange multiplier approach. The procedure wraps the FE method within an outer data-driven iteration. The method is capable of considering anisotropic materials and is adapted to deal with models featuring a combination of exact material knowledge and measured material data. Thereto, three approaches with an increasing level of intrusivity according to the FE formulation are proposed. The numerical results for a quadrupole-magnet model show that data-driven field simulation is feasible and affordable and overcomes the need of modeling the material law.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.