Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RDFFrames: Knowledge Graph Access for Machine Learning Tools (2002.03614v4)

Published 10 Feb 2020 in cs.DB and cs.LG

Abstract: Knowledge graphs represented as RDF datasets are integral to many machine learning applications. RDF is supported by a rich ecosystem of data management systems and tools, most notably RDF database systems that provide a SPARQL query interface. Surprisingly, machine learning tools for knowledge graphs do not use SPARQL, despite the obvious advantages of using a database system. This is due to the mismatch between SPARQL and machine learning tools in terms of data model and programming style. Machine learning tools work on data in tabular format and process it using an imperative programming style, while SPARQL is declarative and has as its basic operation matching graph patterns to RDF triples. We posit that a good interface to knowledge graphs from a machine learning software stack should use an imperative, navigational programming paradigm based on graph traversal rather than the SPARQL query paradigm based on graph patterns. In this paper, we present RDFFrames, a framework that provides such an interface. RDFFrames provides an imperative Python API that gets internally translated to SPARQL, and it is integrated with the PyData machine learning software stack. RDFFrames enables the user to make a sequence of Python calls to define the data to be extracted from a knowledge graph stored in an RDF database system, and it translates these calls into a compact SPQARL query, executes it on the database system, and returns the results in a standard tabular format. Thus, RDFFrames is a useful tool for data preparation that combines the usability of PyData with the flexibility and performance of RDF database systems.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.