Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Representation Learning on Variable Length and Incomplete Wearable-Sensory Time Series (2002.03595v3)

Published 10 Feb 2020 in eess.SP, cs.LG, and stat.ML

Abstract: The prevalence of wearable sensors (e.g., smart wristband) is creating unprecedented opportunities to not only inform health and wellness states of individuals, but also assess and infer personal attributes, including demographic and personality attributes. However, the data captured from wearables, such as heart rate or number of steps, present two key challenges: 1) the time series is often of variable-length and incomplete due to different data collection periods (e.g., wearing behavior varies by person); and 2) inter-individual variability to external factors like stress and environment. This paper addresses these challenges and brings us closer to the potential of personalized insights about an individual, taking the leap from quantified self to qualified self. Specifically, HeartSpace proposed in this paper encodes time series data with variable-length and missing values via the integration of a time series encoding module and a pattern aggregation network. Additionally, HeartSpace implements a Siamese-triplet network to optimize representations by jointly capturing intra- and inter-series correlations during the embedding learning process. The empirical evaluation over two different real-world data presents significant performance gains overstate-of-the-art baselines in a variety of applications, including personality prediction, demographics inference, and user identification.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.