Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Post-Comparison Mitigation of Demographic Bias in Face Recognition Using Fair Score Normalization (2002.03592v3)

Published 10 Feb 2020 in cs.CV

Abstract: Current face recognition systems achieve high progress on several benchmark tests. Despite this progress, recent works showed that these systems are strongly biased against demographic sub-groups. Consequently, an easily integrable solution is needed to reduce the discriminatory effect of these biased systems. Previous work mainly focused on learning less biased face representations, which comes at the cost of a strongly degraded overall recognition performance. In this work, we propose a novel unsupervised fair score normalization approach that is specifically designed to reduce the effect of bias in face recognition and subsequently lead to a significant overall performance boost. Our hypothesis is built on the notation of individual fairness by designing a normalization approach that leads to treating similar individuals similarly. Experiments were conducted on three publicly available datasets captured under controlled and in-the-wild circumstances. Results demonstrate that our solution reduces demographic biases, e.g. by up to 82.7% in the case when gender is considered. Moreover, it mitigates the bias more consistently than existing works. In contrast to previous works, our fair normalization approach enhances the overall performance by up to 53.2% at false match rate of 0.001 and up to 82.9% at a false match rate of 0.00001. Additionally, it is easily integrable into existing recognition systems and not limited to face biometrics.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.