Approximating Text-to-Pattern Distance via Dimensionality Reduction (2002.03459v2)
Abstract: Text-to-pattern distance is a fundamental problem in string matching, where given a pattern of length $m$ and a text of length $n$, over an integer alphabet, we are asked to compute the distance between pattern and the text at every location. The distance function can be e.g. Hamming distance or $\ell_p$ distance for some parameter $p > 0$. Almost all state-of-the-art exact and approximate algorithms developed in the past $\sim 40$ years were using FFT as a black-box. In this work we present $\widetilde{O}(n/\varepsilon2)$ time algorithms for $(1\pm\varepsilon)$-approximation of $\ell_2$ distances, and $\widetilde{O}(n/\varepsilon3)$ algorithm for approximation of Hamming and $\ell_1$ distances, all without use of FFT. This is independent to the very recent development by Chan et al. [STOC 2020], where $O(n/\varepsilon2)$ algorithm for Hamming distances not using FFT was presented -- although their algorithm is much more "combinatorial", our techniques apply to other norms than Hamming.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.