Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Certified Robustness of Community Detection against Adversarial Structural Perturbation via Randomized Smoothing (2002.03421v2)

Published 9 Feb 2020 in cs.CR, cs.LG, and cs.SI

Abstract: Community detection plays a key role in understanding graph structure. However, several recent studies showed that community detection is vulnerable to adversarial structural perturbation. In particular, via adding or removing a small number of carefully selected edges in a graph, an attacker can manipulate the detected communities. However, to the best of our knowledge, there are no studies on certifying robustness of community detection against such adversarial structural perturbation. In this work, we aim to bridge this gap. Specifically, we develop the first certified robustness guarantee of community detection against adversarial structural perturbation. Given an arbitrary community detection method, we build a new smoothed community detection method via randomly perturbing the graph structure. We theoretically show that the smoothed community detection method provably groups a given arbitrary set of nodes into the same community (or different communities) when the number of edges added/removed by an attacker is bounded. Moreover, we show that our certified robustness is tight. We also empirically evaluate our method on multiple real-world graphs with ground truth communities.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.